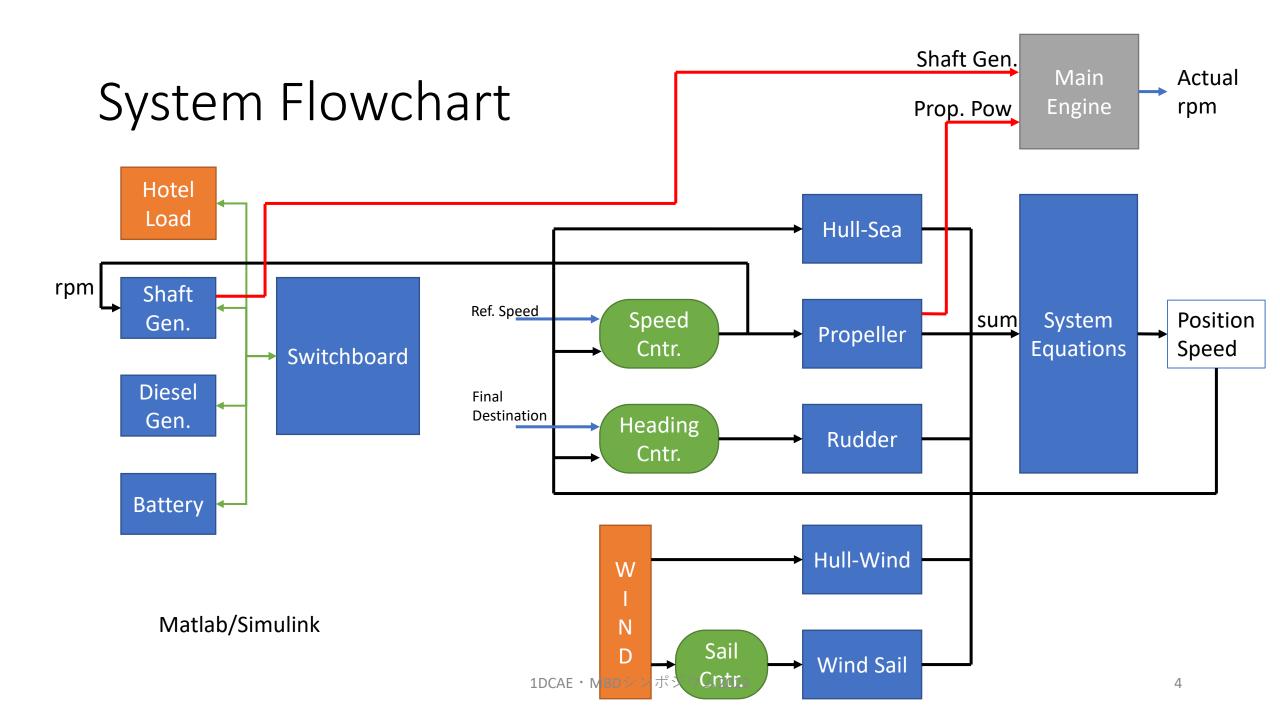

Cem Guzelbulut¹, Motohiro Agata², Hideaki Murayama¹, Katsuyuki Suzuki¹

- 1. The University of Tokyo
 - 2. BEMAC Corporation

08/12/2022


Background

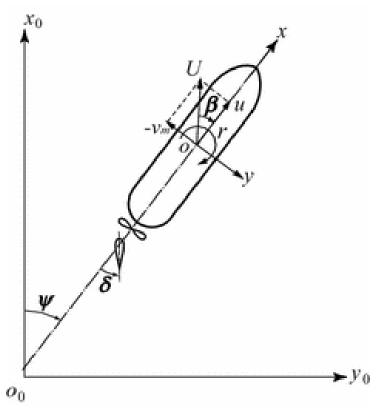
- Increasing fossil fuel consumption lead high level of CO2 emission and becomes important issue in all industries.
- Reduction of CO2 emission is the aim for decarbonized societies.
- For this purpose, digitalization of maritime structures is necessary.

Overview

- Aim:
 - To understand ship dynamics, maneuvering, fuel consumption, power management systems
 - To model interaction between subsystems of ship
- Method:
 - MMG model for mechanical systems
 - Hull-Sea interaction, Hull-Wind interaction, propeller, rudder, Wind Sail, etc.
 - Electric/Energy Systems
 - Generators, battery management system etc.

Motion and Maneuvering Model

- Equation of Motion
 - 3 degree of freedom
 - Surge, sway, yaw


System Equation $(m + m_x)\dot{u} - (m + m_y)v_mr - x_Gmr^2 = X$ $(m + m_y)\dot{v}_m + (m + m_x)ur + x_Gm\dot{r} = Y$

 $(I_{zG} + x_G^2 m + J_z)\dot{r} + x_G m(\dot{v}_m + ur) = N_m$

MMG model – based on system modelling approach

- Consider each source of force generation separately.
- Hull-Sea, $X/Y/N_H$
- Propeller , $X/Y/N_P$
- Rudder , $X/Y/N_R$
- Hull-Wind , $X/Y/N_A$
- Wind Sail, $X/Y/N_s$

Forces $X = X_H + X_P + X_R + X_A + X_S$ $Y = Y_H + Y_P + Y_R + Y_A + Y_S$ $N = N_H + N_P + N_R + N_A + N_S$

Yasukawa, H., Yoshimura, Y. Introduction of MMG standard method for ship maneuvering predictions. *J Mar Sci Technol* **20**, 37–52 (2015). https://doi.org/10.1007/s00773-014-0293-y

Hull-Sea Interaction

$$X_{\rm H} = (1/2)\rho L_{pp} dU^2 X'_{\rm H}(v'_m, r') Y_{\rm H} = (1/2)\rho L_{pp} dU^2 Y'_{\rm H}(v'_m, r') N_{\rm H} = (1/2)\rho L^2_{pp} dU^2 N'_{\rm H}(v'_m, r'),$$

$$X'_{\rm H}(v'_m, r') = -R'_0 + X'_{\nu\nu}v'_m^2 + X'_{\nu r}v'_m r' + X'_{rrr}r'^2 + X'_{\nu\nu\nu\nu}v'_m^4 Y'_{\rm H}(v'_m, r') = -R'_0 + X'_{\nu\nu}v'_m^2 + X'_{\nu r}v'_m r' + X'_{rrr}r'^2 + X'_{\nu\nu\nu\nu}v'_m^4 Y'_{\rm H}(v'_m, r') = -R'_0 + X'_{\nu\nu}v'_m^2 + X'_{\nu r}v'_m r' + X'_{rrr}r'^2 + X'_{\nu\nu\nu\nu}v'_m^4 Y'_{\rm H}(v'_m, r') = -R'_0 + X'_{\nu\nu}v'_m^2 + X'_{\nu r}v'_m r' + X'_{rrr}r'^2 + X'_{\nu\nu\nu\nu}v'_m^4 Y'_{\rm H}(v'_m, r') = -R'_0 + X'_{\nu\nu}v'_m^2 + X'_{\nu r}v'_m r' + X'_{rrr}r'^2 + X'_{\nu\nu\nu\nu}v'_m^4 Y'_{\rm H}(v'_m, r') = Y'_{\nu}v'_m + Y'_{\rm R}r' + Y'_{\nu\nu\nu}v'_m^3 + Y'_{\nu\nur}v'_m r'^2 + Y'_{rrr}r'^3 N'_{\rm H}(v'_m, r') = N'_{\nu}v'_m + N'_{\rm R}r' + N'_{\nu\nu\nu}v'_m^3 + N'_{\nu\nur}v'_m r'^2 + N'_{rrr}r'^3 N'_{\rm H}(v'_m, r') = N'_{\nu}v'_m + N'_{\rm R}r' + N'_{\nu\nu\nu}v'_m^3 + N'_{\nu\nurr}v'_m r'^2 + N'_{rrr}r'^3$$

- Resistive forces acting on ship
- Defined based on normalized velocities, v_m' and r'
- Hydrodynamic coefficients: X'..., Y'..., N'...
- R_0 : the resistance during a straight path

Propeller

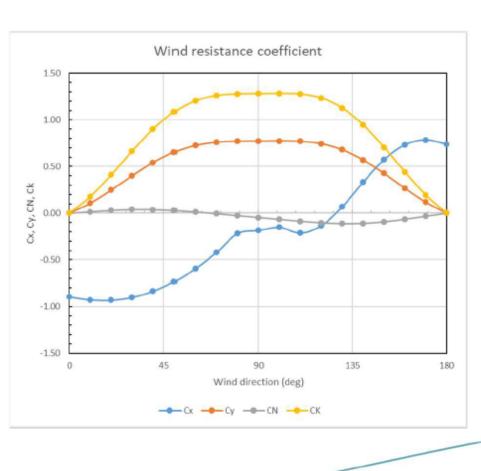
 $X_P = (1 - t_p) \times T$ $Y_P = 0$ $N_P = 0$

$$T = \rho n_P^2 D_P^4 K_T(J_P)$$

 $J_P = \frac{u(1-w_P)}{n_P D_P}$

 w_P is affected propeller position, u, v, and r.

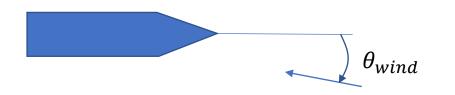
• Propeller only produce thrust in X direction.


• Thrust
$$(T) = \rho n_P^2 D_P^4 K_T(J_P)$$

• Moment (Q) = $\rho n_P^2 D_P^5 K_\theta(J_P)$

Rudder

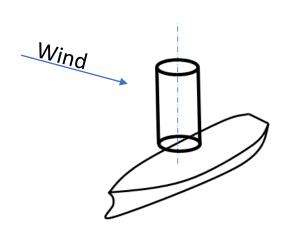
• Forces on rudder module is calculated based on the flow around rudder. (u_R, v_R)


Hull-Wind Interaction

Wind Direction (deg)	Сх	Су	CN	СК
0	-0.90	0.00	0.00	0.00
10	-0.93	0.11	0.02	0.18
20	-0.93	0.25	0.03	0.41
30	-0.90	0.40	0.04	0.66
40	-0.84	0.54	0.04	0.90
50	-0.73	0.66	0.03	1.09
60	-0.59	0.73	0.01	1.20
70	-0.42	0.76	-0.01	1.26
80	-0.22	0.77	-0.03	1.28
90	-0.18	0.77	-0.05	1.28
100	-0.15	0.77	-0.07	1.28
110	-0.21	0.77	-0.09	1.28
120	-0.13	0.74	-0.10	1.23
130	0.07	0.68	-0.11	1.13
140	0.33	0.57	-0.11	0.95
150	0.57	0.43	-0.09	0.71
160	0.73	0.27	-0.06	0.44
170	0.79	0.12	-0.03	0.20
180	0.74	0.00	0.00	0.00

•
$$C_X$$
, C_Y , C_N

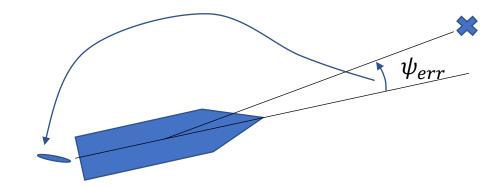
- Frontal, Lateral Areas
- Forces in X, Y, N

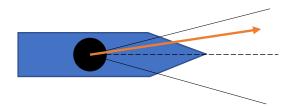

$$C_{X} = X_{A} / (q_{A}A_{F}) \cdot C_{Y} = Y_{A} / (q_{A}A_{L})$$
$$C_{N} = N_{A} / (q_{A}A_{L}L_{OA})$$
$$C_{K} = K_{A} / (q_{A}A_{L}H_{L})$$

Estimation method is explained in the reference paper below:

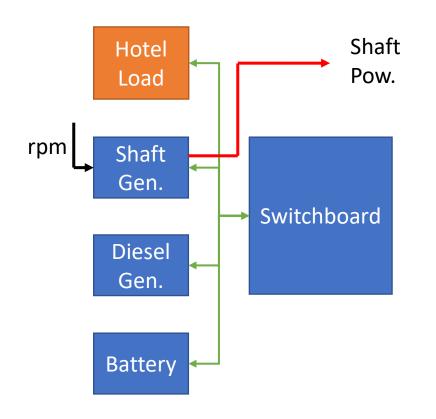
https://dl.ndl.go.jp/view/download/digidepo_10783918_po_ART0006391406.pdAcontentNo=1&atechatiaeNo=

Wind Sail

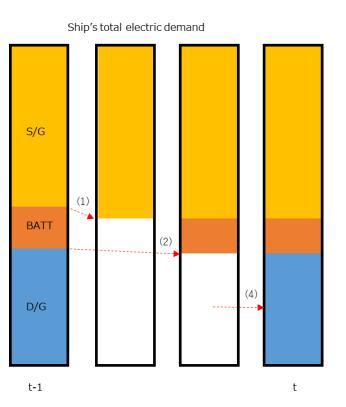

- Sail system is also similar to hull-wind interaction.
- Lift and drag forces were generated due to airflow around rotating cylinder.



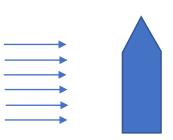
 Generated forces were calculated by using wind speed and wind direction. (Look-up table)


Controllers

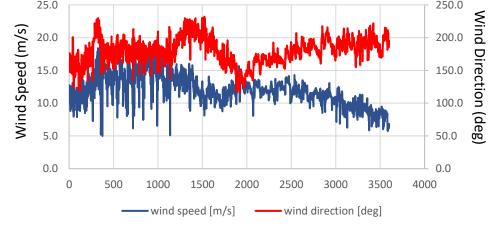
- Propeller speed controller
 - Ship speed was set to 15 knots. PID controller was applied to keep speed same by controlling propeller speed
- Rudder angle controller
 - Rudder angle control to set heading angle always towards to destination point
- Wind sail controller (On/Off)
 - If the resultant force coming from wind sail is between +- 15 degree relative to the nose of ship, it is set on, otherwise it is off.



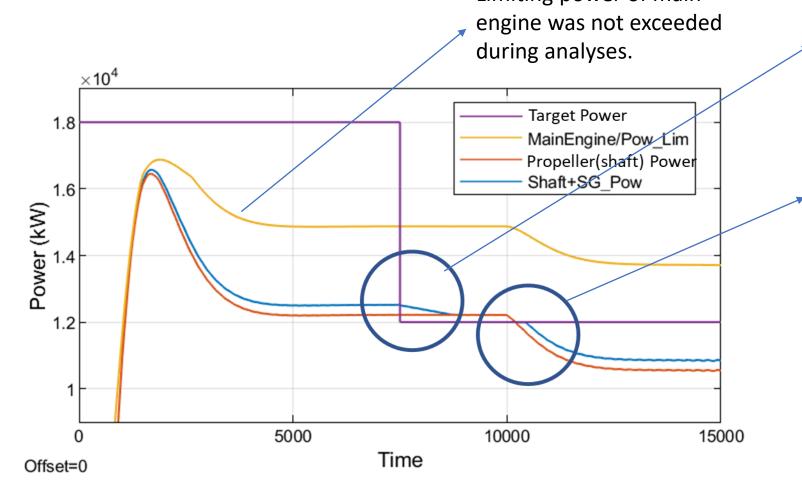
Electric Systems and Power Management



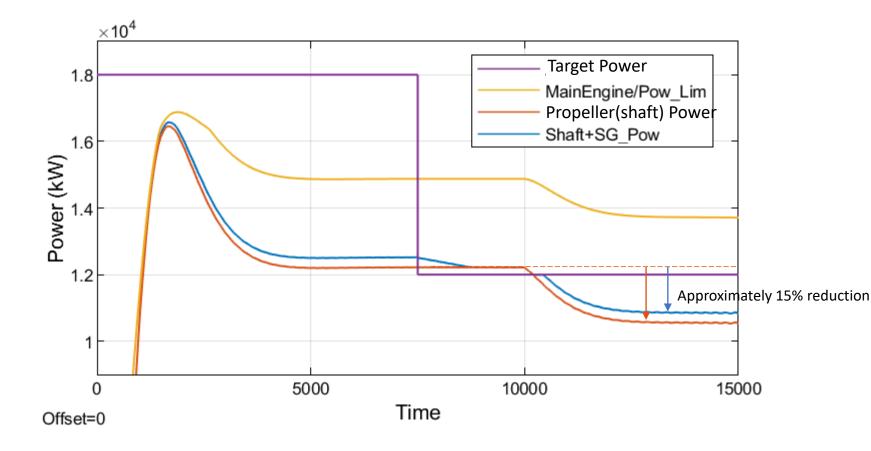
- Simple priority-based energy management
- Switchboard manages devices to store and release energy.
 - First, shaft generator
 - Second, battery due to having a faster response
 - Third, diesel engine as an additional power source



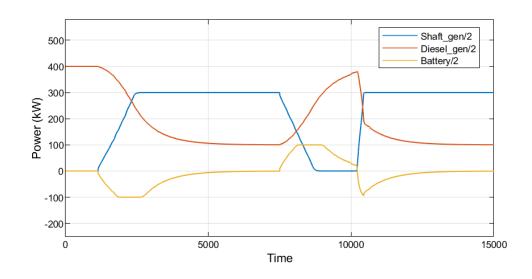
Can wind assistance system reduce fuel consumption?


- First, a constant beam wind is applied.
 - Wind was considered coming at 90 degree
 - Wind speed was also constant.

• Then, an experimental data of wind speed and direction was considered. ^{25.0} ≤

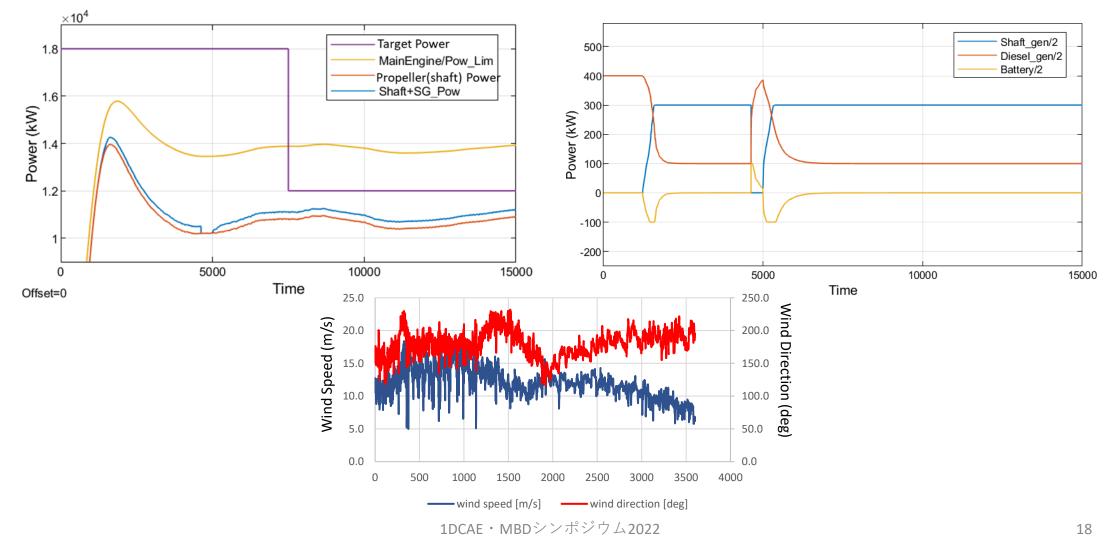


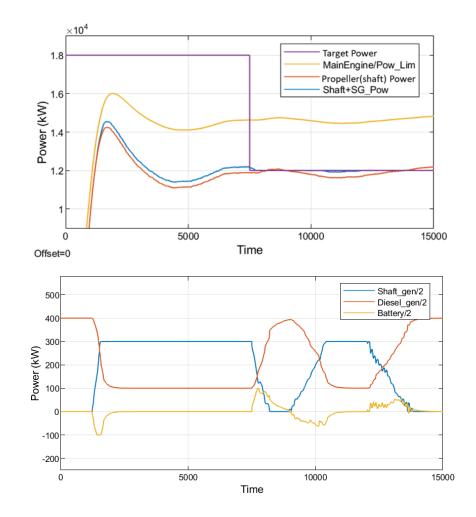
System Behavior under Constant Wind Close-Up


- Target power is reduced at 7500 s.
 - Shaft generator stops
- Wind Sailing System was activated manually at 10000 s.
 - Engine power and propeller power decreased.
 - Shaft generator restarts.

System Behavior under Constant Wind Close-Up

- Main Engine power is basically Shaft+SG power.
- Yellow Line is limiting power for given rpm.
- Purple is the target power.
- We can calculate how much power reduction is provided by using before and after WAD is active.


Electric Point of View


- Engine starts from 0.
 - Diesel engine also works.
- Then, it reaches a stable rotational speed.
 - Shaft generator starts to run.
 - Diesel engine power reduces.
- Optimal power was reduced.
 - Shaft generator stops running.
 - Diesel engine becomes active again.
- Wind Sailing system starts working
 - Total propeller power reduces.
 - Shaft generator starts running again.
 - Diesel engine stops

System Behavior under Real Wind Data

When Sailing system is always active

System Behavior under Real Wind Data When a sailing control system is implemented

 These results show that how energy and power demands changes and system responds based on changing requirements.

Discussion

- 1D/CAE model of ship allows us to understand the potential of wind assistance systems.
- Approximately up to 15% reduction in the power consumption can be achieved and contribute the reduction of fuel consumption, greenhouse gases and CO2 emission.
- The current study investigates only performance of wind assistance system with specified parameters. The reduction in fuel consumption can be further obtained by optimized wind assistance system.
- The benefit of wind assistance systems can be increased by optimizing the route in the next studies.

Conclusion and Future Studies

- 1D CAE model of ship was built considering mechanics, electrics, power dynamics.
 - Allows developing new designs using hardware-in-loop, software-in-loop systems
 - 1D/3D CAE connected product development
 - Enables the investigation of hybrid propulsion, etc.
- Application of wind assistive technology
 - Rotor sails
 - Wind sails, kites for future studies
- In the future studies, it is also necessary to consider rolling motion for stability calculations.
- Also, the strength and deflection limits should be considered to set a limit for wind assistive systems.